Eigenvalue-constrained Faces
نویسنده
چکیده
We characterize the exposed faces of convex sets C of symmetric matrices, invariant under orthogonal similarity (U T CU = C for all orthogonal U). Such sets C are exactly those determined by eigenvalue constraints: typical examples are the positive semideenite cone, and unit balls of common matrix norms. The set D of all diagonal matrices in C is known to be convex if and only if C is, and D is invariant under the group of permutations (acting on diagonal entries). We show how any exposed face of C is naturally associated with an exposed face of D, by relating the stabilizer groups of the two faces.
منابع مشابه
Eigenvalue analysis of constrained minimization problem for homogeneous polynomial
In this paper, the concepts of Pareto H -eigenvalue and Pareto Z -eigenvalue are introduced for studying constrained minimization problem and the necessary and sufficient conditions of such eigenvalues are given. It is proved that a symmetric tensor has at least one Pareto H -eigenvalue (Pareto Z -eigenvalue). Furthermore, theminimumPareto H -eigenvalue (or Pareto Z -eigenvalue) of a symmetric ...
متن کاملA Symplectic Perspective on Constrained Eigenvalue Problems
The Maslov index is a powerful tool for computing spectra of selfadjoint, elliptic boundary value problems. This is done by counting intersections of a fixed Lagrangian subspace, which designates the boundary condition, with the set of Cauchy data for the differential operator. We apply this methodology to constrained eigenvalue problems, in which the operator is restricted to a (not necessaril...
متن کاملStudy of fullerenes by their algebraic properties
The eigenvalues of a graph is the root of its characteristic polynomial. A fullerene F is a 3- connected graphs with entirely 12 pentagonal faces and n/2 -10 hexagonal faces, where n is the number of vertices of F. In this paper we investigate the eigenvalues of a class of fullerene graphs.
متن کاملCone-constrained eigenvalue problems: theory and algorithms
Equilibria in mechanics or in transportation models are not always expressed through a system of equations, but sometimes they are characterized by means of complementarity conditions involving a convex cone. This work deals with the analysis of cone-constrained eigenvalue problems. We discuss some theoretical issues like, for instance, the estimation of the maximal number of eigenvalues in a c...
متن کاملRegularized Total Least Squares Based on Quadratic Eigenvalue Problem Solvers
This paper presents a new computational approach for solving the Regularized Total Least Squares problem. The problem is formulated by adding a quadratic constraint to the Total Least Square minimization problem. Starting from the fact that a quadratically constrained Least Squares problem can be solved via a quadratic eigenvalue problem, an iterative procedure for solving the regularized Total...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997